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Abstract-Incompressibility is gradually introduced into the finite elements with the mesh
refinement in such a way as to balance it with the residual discretization energy in order to
ensure fastest convergence to the incompressible solution with best conditioned stiffness matrix
to minimize round-off errors in the computations.

INTRODUCTION

In the finite element analysis of elastic matter, as Poisson's ratio nears one half or as the
material approaches incompressibility two things might happen: the approximation quality
of the elements can be entirely lost or the condition of the stiffness matrix may deteriorate
indefinitely[I]. Assuming beforehand the material incompressible gives rise to a new
independent variable-the pressure and the appearance of an additional equation for zero
volume change. Variational principles, from which incompressible finite elements can be
formed, including the pressure as a Lagrange multiplier have been brought forth[2] but
are no more minimal.

Yet, even if the analytical model assumes the material incompressible, computationally
it is rarely so owing to the discretization. It is reasonable, therefore, to attempt to introduce
the incompressibility only gradually as the mesh is refined in such a manner as to balance it
with the discretization error and avoid excessive ill-conditioned stiffness matrix. The purpose
of this paper is to demonstrate the practical feasibility of such a scheme.

Successful employment of this residual energy balancing technique to the finite element
modeling of thin plates and shells is described in[3-5].

COMPRESSIBILITY ERROR

In this section we derive the energy error incurred in replacing the incompressible material
by a compressible one.

The equations of equilibrium of an elastic solid enclosed in D with surface S = Sl + S2 are

with

2 m ce
V' U i + ---+FdG=O

m - 2 ex;
i = 1,2. 3, in D (1)
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and with the prescribed displacements and surface traction boundary condition:,

u=(ui,u~,uD on 8 1

T = (Tt, Ti, T3*) on Sz

(3)

(4)

where m = I/v is the inverse of Poisson's ratio, G the shear modulus, e the volume change.
U = (u l , uz, U3) the displacement vector in the Cartesian system (Xl. x z , x 3 ), F = (Fl. f'z, F.d
the body forces, and T = (T" Tz , T3 ) the surface tractions. The strain tensor f.ij is given in
terms of U by

(5)i,j = 1, 2, 3.
OUi Cll i iJu i

f. ii = ::::-' f.ij = - +--
- OX; GXj ex;

Hook's law which relates the stress (Jij to the strain Gij can be written for the isotropil..:
solid as

(Jii 2G (f. ii + ~2)'m-
i,j = 1.2,3 (6)

and on any surface with unit normal vector n = (n l ,11 2 .113) the traction is

(7)

The total potential energy n(U) of the boundary value problem in equations (1)-(3) and
(4) we write as

n(U)=E(U)- f (Flu l +F2u2 +F3u3)dv
D

f (Ttu l + T2*U2 + T3*U3) ds (8)
82

where the elastic energy E( U) is explicitly given by

f {I m + 1 2 1 2 2
E(U) = - -- e + - [(c 11 - cn) + (cn - C33 ) + (C 33

D 311'1-2 :

1(2 + 2 + 2 )\ d .+ 2- C\2 C23 C31 f V (9)

with G set equal I. The principle of minimum potential energy states that if U is the elastic
solution to equations (1)-(4) then

n( U) = min n(0)
F

(10)

minimization being carried out of the displacement trial field 0 which satisfy equation (3)

and for which £(0) < 00.

In the case of an incompressible material with 11'1 2 (or v = 1/2) the pressure p

(11 )

becomes independent and the direct stress strain relations become with unit G

, iJu;'
(J .. =2- +P
" iJx;

1,2,3 ( (2)
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while the equations of equilibrium become

V2U~ + op + F = 0
'ax; 1

(13)

(14)

in which ( )' refers to the incompressible state.
Integration by parts with the use of equations (12) and (13) proves that the same dis

placement function that minimizes n( U) in equation (8) minimizes also

ljJ(U) = Iv {H(e 11 - e22 8~1 + e;2)2 + (e22 - 833 - e;2 + e;3)2

+ (e 33 - 811 - 8;3 + e~I)2] + t[(e I2 - e~2f + (823 - 8;3)2

+ (e31 - 8;1)2] + 2~ (Ke - pf} dv

which can be concisely written as

ljJ(U) = II U - U'II? + tK11 e - ~ pll:
and in which

2m + 1
K=---.

3m - 2

Since U minimizes ljJ( U)

t/J(U):<:; t/J(U')

and consequently

leading to

which with

becomes

IIU - U'II? + tKllel16:<:; ~ IIpl16

or equivalently

and this is what we were seeking.

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)
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To prove that the bound in equation (22) is optimal and that in fact E(U U') varies
linearly with 1/K, we only need find an example where equality in equation (22) actually
occurs. An example with an accessible analytical solution is that of a hollow sphere[6]
holding an internal unit pressure. [n the incompressible case the radial displacement u' and
the pressure are given by

u'
A

r 2 (23)

in which r is the radial coordinate and a and b the inner and outer radii, respectively. In the
compressible case

from which we find that

assuming unit volume.

A m-2
u = - + pr

r 2 2(m + 1)
(24)

(25)

(27)

CONDITION OF STIFFNESS MATRIX

According to[IJ the spectral condition number C2 (K) of the global stiffness matrix
formed from the elastic energy expression in equation (9) is bounded by

N~ N~
C2 ( 2) :s; C2(K) :s; Cl A ( 2) (26)

III m - 1 m

in which Nes is the number of elements per side in the mesh, Cl and C2 numerical constants,
;'1 the exact lowest eigenvalue of the solid and III the approximate finite element eigenvalue.
Once the approximation is good enough for III to be replaced by Al the condition number
becomes of the form

N/;,
C2 (K) = C3 -,--

A1(m - 2)

Our ability to obtain a good approximation for )'1 when K in equation (16) is large with a
reasonable number (say seven) of finite elements may well depend of K because of the term

tKJe 2 dv
D

(28)

in the elastic energy expression and we will pay close attention to this crucial approximation
question in the following sections. It will be shown that indeed some finite elements are
entirely inadequate to cope with K -+ Cf) while others furnish accurate results regardless
of K --> Cf) permitting the interchange of )'1 and III in equation (26) for discretization with a
moderate number of finite elements.

In any event care must be exercised in assigning a value for m = l/v in order to approxi
mate the incompressible state. Lowering v too much away from 1/2 might introduce a large
compressibility error compared with the accuracy which can be obtained with the mesh of
finite elements. On the other hand taking vtoo close to 1/2 might either ruin the discretization
accuracy or produce excessively ill-conditioned stiffness matrix. Poisson's ratio v = l/m ought
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to be increased gradually with the mesh refinement to balance the compressibility error with
the best discretization accuracy and in such a way as to keep Cz(K) as low as possible.

Exploring ways to accomplish this is the subject of the following sections.

RESIDUAL ENERGY BALANCING

We introduce the residual energy balancing technique by way of carefully examining the
problem of a radially pulsating hollow sphere free of surface and body forces. Presently

e = Ur + 2u/r (29)

(30)

(31)

and to form the element stiffness and mass matrices we need the elastic and kinetic energies
E and K which we write here as

E = G ( [m ~ 2 e
Z + (u; + 2 ~:) ] r

Z
dr

and
1 b

K = - f uZr z dr.
2 a

The element stiffness matrix k derived from E in equation (30) we prefer to write in the form

z = G/(m - 2). (32)

Assembling the element stiffness matrices k into the global stiffness matrix K and the
element mass matrices m into the global mass matrix M produces the algebraic eigenproblem

(33)

(34)

and the lowest A is given by

(
xTK x xTK X)

A = min z -T-
J
- + G -T-

Z
- .

x x Mx x Mx

The term zxTK1x/xTMx is the compressibility energy and should vanish as z~ 00, but we
have to distinguish here between two distinct cases: the one with a singular K 1 and the other
with a non singular K1 •

Suppose first that discretization is achieved by assuming a polynomial approximation of
degree p and in particular let p = 1. For this, the (lumped[7]) element matrix m and the
element matrix k l for an element situated between r = rl and r = rz become

k = ~ (aZ + 3/4 af3 - 3/4)
1 4 af3 - 3/4 f3z + 3/4 '

m= ~ (r i )
4 r~

(35)

(36)

in which ra = (r l + rz)/2, h = rz - rl , a = 1 - ra/h and f3 = 1 + r)h. The element stiffness
matrix k l is non singular and since[8]

. xTK1x . yTkly
mm-->mm--

x x Tx - y yTy

so will K 1 be and we have that

IJSS Vol. 10 No. 9-E

. xTK1x Z
mm -T-- = O(h ).

x Mx
(37)
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This means that incompressibility is asymptotically achieved as h ~ 0 but for any given
h accuracy is ruined by increasing z indefinitely since then zxTK1xjXTMx will grow without
bound making ), = 0 or the element perfectly rigid.

In boundary value problems the situation is the same. There the energy error E(u - 11) in
the finite element solution u (this is also the error in eigenvalues in eigenproblems(9. 10]) is

(38)

and if e can not assume any constant value unless u= 0 then as z ~ CI.J. e --> O. e~ 0 but
also U~ 0 making the element ever more rigid.

This situation is entirely analogous to that in thin inextensional curved beams where if
the extensional strain can not assume exactly the rigid body mode (i.e. assume any constant
value) then reducing the thickness makes the extensional energy vanish only with vanishing
displacements and the element becomes excessively rigid.

In view of equation (37) the discretization error can be balanced with the compressibility
error by choosing. for first order elements, Z = O(h -1) since then the compressibility error
derived before is O(h) and so will be zxTK[xjx T Mx. But it is rather a poor approximation
since with linear elements we expect quadratic accuracy for the eigenvalues.

In boundary value problems the situation is again the same. The second integral in equa
tion (38) can be 0(h2

) but the first only O(h). Numerical experiments confirm too that no
more than O(h) accuracy is obtainable in this case.

To avoid the absolute rigidity of the element with z = (J) we need singularize K1 and can
achieve this by choosing the shape functions to enable e to assume any constant value
(in curved beams or shells this is analogous to the introduction of exact rigid body modes).
Thus we start by assuming a polynomial assumption for e(as in[5]) and integrating. For

this yields

,. U
e = U r + 2 -- = Go

r

• bo l.
II = "'1 + 3aO r,.

(39)

(40)

and with these shape functions both k[ and K1 become singular. Now minimization in
equation (34) with z ~ CfJ will seek the mode corresponding to the zero eigenvalue of K 1

and zxTK1xjx™x will remain finite for any z. Since presently zxTKdxTMx can become
arbitrarily small for any z we expect to find a mode that will yield simultaneously 0(h

1
)

accuracy for the second integral in equation (38) and 0(h2
) also for the first integral in

equation (38). Another technically interesting possibility to reduce the rank of K1 , or at
least hasten the diminishing of its lower spectrum, is by assuming a polynomial expressing
for uand using numerical integration. If uis assumed a polynomial of degree p then follow
ing the rule of[1 1, 12] and integrating each energy term by p Gauss points will singularize
k

1
and consequently K[. For instance. with p = 1, analytic integration produce the k 1

(2 x 2) matrix of rank 2, but a one Gauss point integration reduces this to rank 1.
The beneficial effects of numerical integration in the finite element analysis of thick

plates and shells were earlier discovered and described in[13-15].
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NUMERICAL EXPERIMENTS

The purpose of these experiments is to verify, at least for the model problem of a freely
vibrating hollow sphere made of incompressible material, that by approximating the
displacement by a polynomial of degree p and integrating (in one dimension) the energy
terms with p Gauss points the full energy rate of convergence O{h2p

) can be obtained by
taking

z = cN/p (41)

where c is a positive constant and N e the number of elements (in multidimensionaJ problems
Ne should be replaced by Nes ' the number of elements per side) A reasonable value for
c keeping Cz(K) as low as possible will also emerge from these experiments.

The fundamental eigenvalue (square of frequency) A of the radially vibrating sphere is
given by

(42)

which for G =! (unit elastic modulus), a = ! and b = J becomes A= = 9·333.
First, the sphere is discretized with first order (p = 1), two-nodal-point elements and the

stiffness matrix created with one Gauss point integration In accordance with equation (41)
z is taken in the form z = eN; and the calculated eigenvalue Ais shown in Fig. J as a function
of the number of elements in the mesh and for different values of c. The variation of ). with
c is aJso shown in Fig. 2 for Ne = 15 and indeed between 2 and 50 the accuracy of the
eigenvalue depends only weakly on c A reasonable value for c is seen from Fig. 2 to be 5.
Figure 3 shows the reduction of the relative error bA/A in A vs Ne on a logarithmic scale to
show that the optimaJ rate of convergence O(N;2) is actually achieved. For the choice
z = eN; itisfound that C2(K) = 3eN:(Fig. 4(a) shows C2{K)vsNe fore = 5on a logarithmic
scale) and hence even though overestimating c has little effect on the accuracy, it raises the
condition number of K and should be kept down. Actually to obtain three decimals accuracy
in A. with linear (p = 1) elements and with c = 5 about 10 elements are required with C2(K) =
1'5 lOS, which is well within the capabilities of modern computers.

9.7
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Fig. 1. Convergence of computed fundamental eigenvalue Aof a radially pulsating incompress
ible hollow sphere discretized with first order (P = 1) elements integrated with one Gauss point
as a function of the number of elements in the mesh and for different values of e in z = eN;.
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Fig. 2. Variation of'\ from Fig. J with c for Nc 15.

- 2 ~t-' 3.j-_-r-4 _...;5:...........;.6-;7.......:;8_....:7.;:..0__+:75_
Ne

.. 1. __1

Fig. 3. Convergence of,\ from Fig. I for c CC 5 vs N c • Logarithmic scale demonstrates the
attainment of the optimal rate of convergence O(N;; 2).

Increasing the order of the element must be accompanied by an increase in the rate of
growth of z and consequently of C2(K). In general with a polynomial of degree p (and p
Gauss integration points) z = cN;P and C2(K) = O(N;P+2) which is unlike the compressible
case in which the rate of growth of C2(K) does not depend on p. Nevertheless with higher
order elements the error decreases like O(N;2 p

) and fewer elements are needed for a given
accuracy. Hence in spite of the fact that C2(K) grows faster with higher order elements, less
elements are needed for the same accuracy and the value of C2(K) might still be lower than
that for the low order elements. The following numerical example shows that this is actually,
the case. It consists of computing A with a quadratic (p = 2), three-nodal-point element,
a 2 point Gauss integration and z = eN:. Figure 5 shows the rate of convergence of Afor
different values of e and this is seen indeed to be O(Ne-

4
). A good choice for c is 10, but

again overestimating it changes the discretization accuracy only slightly. The condition
number grows now with N; as seen from Fig. 4 (b) (drawn for c = 10). Yet per accuracy the
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Fig. 4. Spectral condition number C2 (K) of global matrix K for hollow sphere discretized with
(a) linear elements integrated with one Gauss point and with z = 5N.2 and (b) quadratic elements
integrated with two Gauss points and with z = 10N.4 • Theoretical rates of growth O(N/) and

0(N.6
) are verified.

2 3 4
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Fig. 5. Convergence of A with quadratic (p = 2) elements. Optimal rate of convergence O(N. -4)
is obtained with z = cN/.

higher element leads to a better conditioned global stiffness matrix. To obtain a 3 decimals
accuracy in Aonly 3 quadratic elements are needed (they are hence also more economical
computationally) and CiK) = 2 x 104

, less than that with linear (p = 1) elements.
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